Homework 1
Question 1
A typical input variable is identified for each of the following examples of dynamic systems. Give at least one output variable for each system.

1. Human Body: neuro-electric pulses.
2. Company: information.
3. Power Plant: fuel rated.
4. Automobile: steering wheel movement.
5. Robot: applied voltage to joint motor.
6. Highway Bridge: vehicle force.

Also, indicate other possible inputs.

1. Muscle contraction, body movement, body temperature, hate rate.
α. Decisions, Profits, products
2. Electric power, profit. customer satisfaction pollution rate

4 Front whee turn, direction of heading, noise level, accident, pollution level
5. Motions of joints and end-effector, trajectory error, collision,
6. Bridge oscillation, overload, noise

Give four categories of uses of dynamic modeling. List advantages and disadvantages of experimental modeling over analytical modeling.
Categories of uses of dy ramic modeling: system analysis, simulation and e valuation system design and modification fault detection and diagnosis system control

Advantages: A real physical system Realistic practical inputs Feasible / practical systern

Disadvantages:
A physical /prototype is needed. Test instrumentation and procedure can be costly.
Testing is slow
system modification can be difficult.

Represent the electrical network in state space where $v_{0}(t)$ is the output.
Write the differitial equations for each inductor and capacitor (energy storage element)

Select $i_{L_{1}}, i_{L_{2}}$ and V_{c} as the state variables and re-write the equations:
consider the node \# 1 below:

write the node equation for mode * 1

$$
\begin{equation*}
\frac{v_{i}-V_{L_{1}}}{1}=i_{L_{1}}+\frac{V_{L_{1}}-V_{L_{2}}}{3} \tag{7}
\end{equation*}
$$

Consider the mode $\# 2$.

write the rode quaction for node $\# 2$.

$$
\begin{equation*}
\frac{V_{L_{1}}-V_{L_{2}}}{3}=\frac{V_{L_{2}}-V_{c}}{1}+i_{L_{2}} \tag{8}
\end{equation*}
$$

pay attention to the capacitor, we have an other quation below:

$$
\frac{V_{L_{2}}-V_{c}}{1}=i_{c} \quad(q)
$$

put equations (7) (8,19) together, we have.

$$
\left\{\begin{array}{l}
V_{i}-V_{L_{1}}=i_{L_{1}}+\frac{1}{3} V_{L_{1}}-\frac{1}{3} V_{L_{2}} \\
\frac{V_{L_{1}}}{3}-\frac{V_{L_{2}}}{3}=v_{L_{2}}-V_{c}+i_{L_{2}} \\
V_{L_{2}}-V_{c}=i_{c}
\end{array}\right.
$$

Simplify the above equations, we got

$$
\left\{\begin{array}{l}
-\frac{4}{3} v_{L_{1}}+\frac{1}{3} v_{L_{2}}=i_{L_{1}}-v_{i} \tag{10}\\
\frac{1}{3} v_{L_{1}}-\frac{4}{3} v_{L_{2}}=i_{L_{2}}-v_{c} \\
i_{c}=v_{L_{2}}-v_{c}
\end{array}\right.
$$

Base on Eq. (10) and (11), we solve for $V_{2}, \& V_{L_{2}}$.

$$
\left\{\begin{array}{l}
V_{L_{1}}=-\frac{4}{5} i_{L_{1}}-\frac{1}{5} i_{L_{2}}+\frac{1}{5} V_{c}+\frac{4}{5} V_{i} \\
V_{L_{2}}=-\frac{1}{5} i_{L_{1}}-\frac{4}{5} i_{L_{2}}+\frac{4}{5} V_{c}+\frac{1}{5} V_{i} \text { (14) }
\end{array}\right.
$$

Substitute Eg. (14) into Eq. (12), we get:

$$
i_{c}=-\frac{1}{5} i_{L_{1}}-\frac{4}{5} i_{L_{2}}-\frac{1}{5} V_{c}+\frac{1}{5} V_{i} \quad(15)
$$

Substrate Eq. (13) (14) (15) into Fr. (4) (5) (6), we have

$$
\left\{\begin{array}{l}
i_{L_{1}}=-\frac{2}{5} i_{L_{1}}-\frac{1}{10} i_{L_{2}}+\frac{1}{10} v_{c}+\frac{2}{5} v_{i} \\
i_{L_{2}}=-\frac{1}{5} i_{L_{1}}-\frac{4}{5} i_{L_{2}}+\frac{4}{5} v_{c}+\frac{1}{5} v_{i} \\
\dot{v}_{c}=-\frac{2}{5} i_{L_{1}}-\frac{8}{5} i_{L_{2}}-\frac{2}{5} v_{c}+\frac{2}{5} v_{i}
\end{array}\right.
$$

The vector -matrix form of the state equation:

$$
\left[\begin{array}{l}
i_{L_{1}} \\
i_{L_{2}} \\
i_{c}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{2}{5} & -\frac{1}{10} & \frac{1}{10} \\
-\frac{1}{5} & -\frac{4}{5} & \frac{4}{5} \\
-\frac{2}{5} & -\frac{8}{5} & -\frac{2}{5}
\end{array}\right]\left[\begin{array}{l}
i_{L_{1}} \\
i_{L_{2}} \\
v_{c}
\end{array}\right]+\left[\begin{array}{c}
\frac{2}{5} \\
\frac{1}{5} \\
\frac{2}{5}
\end{array}\right] v_{i}
$$

Since the system output $V_{0}=V_{c}$

$$
V_{0}=0 \cdot i_{L_{1}}+\theta \cdot i_{L_{2}}+v_{c}+0 \cdot v_{i}
$$

The vector-matsix form of the output equation is:

$$
V_{0}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{L_{1}} \\
i_{L_{2}} \\
V_{c}
\end{array}\right]+[0] \cdot V_{i}
$$

Question 4
Please find the state space model for the mechanical system below, assuming $f(t)$ as input, $x_{l}(t)$ and $x_{2}(t)$ as the outputs.

FBD of M_{1}

Therefore: $\quad \Sigma F=m a \Rightarrow$

$$
f(t)-k\left(x_{1}(t)-x_{2}(t)\right)-c\left(\dot{x}_{1}(t)-\dot{x}_{2}(t)\right)=m_{1} \ddot{x}_{1}(t)
$$

$F B D$ of M_{2}

$$
\left.c\left(\dot{x}_{1}(t)-\dot{x}_{2}(t)\right) \xrightarrow{k\left(x_{1}(t)-x_{2}(t)\right.}\right) m_{2}
$$

Therefore:

$$
\begin{aligned}
& k\left(x_{1}(t)-x_{2}(t)\right)+c\left(\left(\dot{x}_{1}(t)-\dot{x}_{2}(t)\right)=m_{2} \ddot{x}_{2}(t)\right. \\
& \ddot{x}_{1}=-\frac{k}{m_{1}}\left(x_{1}(t)-x_{2}(t)\right)-\frac{c}{m_{1}}\left(\dot{x}_{1}(t)-\dot{x}_{2}(t)\right)+\frac{f(t)}{m_{1}} \\
& \ddot{x}_{2}=\frac{k}{m_{2}}\left(x_{1}(t)-x_{2}(t) j+\frac{c}{m_{2}}\left(\dot{x}_{1}(t)-\dot{x}_{2}(t)\right)\right.
\end{aligned}
$$

To form state equation

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\ddot{x}_{1}(t) \\
\ddot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{k}{m_{1}} & \frac{k}{m_{1}} & -\frac{c}{m_{1}} & \frac{c}{m_{1}} \\
\frac{k}{m_{2}} & -\frac{k}{m_{2}} & \frac{c}{m_{2}} & -\frac{c}{m_{2}}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{m_{1}} \\
0
\end{array}\right] f(t)
$$

Substitute $m_{1}=1, m_{2}=1, c=1$ \& $k=1$ into the Eq. above:

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] f(t)
$$

Since the system outputs are x_{1} and x_{2}

$$
\Rightarrow \quad y_{1}=x_{1} \quad y_{2}=x_{2}
$$

the output equation is

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]+[0] f
$$

